高中数学必修一函数变换(高中数学函数变换公式)
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修一函数变换的问题,于是小编就整理了3个相关介绍高中数学必修一函数变换的解答,让我们一起看看吧。
一次函数拉氏变换?
拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有引数实数t(t≥0)的函数转换为一个引数为复数s的函数。
定义: f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定:拉普拉斯变换。
拉普拉斯变换是对于t<0函数值为零的连续时间函数x(t)通过关系式
(式中st为自然对数底e的指数)变换为复变量s的函数X(s)。它也是时间函数x(t)的“复频域”表示方式。
一次函数图像旋转公式?
一次函数绕点旋转公式为:tan(β-α)=(tanβ-tanα)/(1+tanβ*tanα),一次函数及其图象是初中代数的重要内容。
一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。
1什么是一次函数
一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。
当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数。
注意:正比例函数是一次函数的特例,正比例函数一定是一次函数,但一次函数不一定是正比例函数。
2一次函数的性质
1、y的变化值与对应的x的变化值成正比例,比值为k。
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2、当x=0时,b为函数在y轴上的交点,坐标为(0,b)。
当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3、k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
4、当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
5、函数图象性质:当k相同,且b不相等,图像平行;
当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。
6、平移时:上加下减在末尾,左加右减在中间。
一次函数变换公式?
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
5.求个两一次函数式图像交点坐标:解两函数式 两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0) k b + + 在一象限 + - 在四象限 - + 在二象限 - - 在三象限
8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.左移X则B+X,右移X则B-X 11.上移Y则X项+Y,下移Y则X项-Y (有个规律.b项的值等于k乘于上移的单位在减去原来的b项。)
上移:(a为移动的数量)Y=k(X+a)+b Y=kX+ak+b
下移:(a为移动的数量)Y=k(X-a)+b Y=kX-ak+b
11.ax+by+c=0[一般式]
12.y=kx+b[斜截式] (k为直线斜率,b为直线纵截距,正比例函数b=0)
13.y-y1=k(x-x1)[点斜式] (k为直线斜率,(x1,y1)为该直线所过的一个点)
14.(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式] ((x1,y1)与(x2,y2)为直线上的两点)
15.x/a-y/b=0[截距式] (a、b分别为直线在x、y轴上的截距)
到此,以上就是小编对于高中数学必修一函数变换的问题就介绍到这了,希望介绍关于高中数学必修一函数变换的3点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.sssnss.com/post/83060.html