首页高中数学高中数学必修公式推导过程(高中数学必修公式推导过程总结)

高中数学必修公式推导过程(高中数学必修公式推导过程总结)

bsmseobsmseo时间2023-09-29 04:58:21分类高中数学浏览99
导读:大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修公式推导过程的问题,于是小编就整理了2个相关介绍高中数学必修公式推导过程的解答,让我们一起看看吧。高中重要公式推导过程?全概率公式的推导?高中重要公式推导过程?正弦、余弦的和差化积公式 指高中数学三角函数部分的一组恒等式 。 sinα+sinβ=2sin[(α+β /……...

大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修公式推导过程的问题,于是小编就整理了2个相关介绍高中数学必修公式推导过程的解答,让我们一起看看吧。

  1. 高中重要公式推导过程?
  2. 全概率公式的推导?

高中重要公式推导过程?

正弦、余弦的和差化积公式  指高中数学三角函数部分的一组恒等式 。  

高中数学必修公式推导过程(高中数学必修公式推导过程总结)
(图片来源网络,侵删)

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]   

sinα一sinβ=2cos[(α+β)/2]·sin[(α-β)/2]  

高中数学必修公式推导过程(高中数学必修公式推导过程总结)
(图片来源网络,侵删)

 cos α+cos阝=2cos[(α+β)/2]·cos[(α-β)/2]   cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】    以上四组公式可以由积化和差公式推导得到证明过程  法1 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程   因为   sin(α+β)=sin αcos β+cos αsin β,   sin(α-β)=sin αcos β-cos αsin β,   将以上两式的左右两边分别相加,得   sin(α+β)+sin(α-β)=2sin αcos β,   设 α+β=θ,α-β=φ   那么   α=(θ+φ)/2, β=(θ-φ)/2   把α,β的值代入,即得   sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]。

概率公式的推导?

全概率公式推导如下:

高中数学必修公式推导过程(高中数学必修公式推导过程总结)
(图片来源网络,侵删)

设 A1,A2,A3,A4,...,An 是样本空间的一个完备***组。且*** A1,…,An 两两互不相容。可用公式表示如下:A_{i}\cap A_{i} = \phi(i\ne j)。

每一次试验中,完备***组中有且仅有一个发生。完备***组构成样本空间的一个划分。

***设*** A 完备***组为 B_{1},B_{2},B_{3},…B_{n} ,则:P(A)=P(AB1)+P(AB2)+P(AB3)+…P(ABn)。根据:条件概率公式。

P(A) 可重新表示如下P(A)=P(A/B_{1})P(B_{1})+P(A/B_{2})P(B_{2})+P(A/B_{3})P(B_{3})+…+P(A/B_{n})P(B_{n}) =\sum_{i=1}^{n}{P(B_{i})P(A/B_{i})}。

全概率公式为概率论中的重要公式,它将对一复杂***A的概率求解问题转化为了在不同情况下发生的简单***的概率的求和问题。

全概率公式是概率论中的重要公式,用于计算一个***在所有相关***中发生的概率。
其公式推导如下:设***B1,B2,B3...Bn是一组互不相容***,它们构成了样本空间Ω的一个划分,即Ω=B1∪B2∪B3...∪Bn,且P(Bi)>0 (i=1,2...n),设A是Ω的任一***,则有:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) 即全概率公式,在实际应用中,通过全概率公式,可以将复杂***的概率转化为几个简单***的概率之和,更方便计算。

据个例子,A和B无关,A必然发生那么P(A|B)=P(A|否B)=1P(A)=2>1 P(A|B)只是表示B发生时,A的概率,在算全概率是不要忘了乘上B发生的概率所以要记住P (A)= P(A|B)*P(B) + P(A|否B)* P(否B)

到此,以上就是小编对于高中数学必修公式推导过程的问题就介绍到这了,希望介绍关于高中数学必修公式推导过程的2点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.sssnss.com/post/20064.html

公式概率推导
高中语文必修二专项训练题(高中语文必修二专项训练题及答案) 凤凰高中语文必修一统编版(江苏凤凰出版社语文必修一)