高中数学必修五的公式(高中数学必修五的公式有哪些)
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修五的公式的问题,于是小编就整理了2个相关介绍高中数学必修五的公式的解答,让我们一起看看吧。
数学必修五定义定理公式?
1)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,
tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;
(2) sin(-α)= -sinα,cos(-α)=cosα,
tan(-α)= -tanα,cot(-α)= -cotα
(3)sin(π+α)= -sinα,cos(π+α)= -cosα,
tan(π+α)=tanα,cot(π+α)=cotα
(4)sin(π-α)=sinα,cos(π-α)= -cosα,
tan(π-α)= -tanα,cot(π-α)= -cotα
(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,
tan(π/2-α)=cotα,cot(π/2-α)=tanα
(6) sin(π/2+α)= cosα,cos(π/2+α)= -sinα,
tan(π/2+α)= -cotα,cot(π/2+α)= -tanα
(7)sin(3π/2+α)= -cosα,cos(3π/2+α)=sinα,
tan(3π/2+α)= -cotα,cot(3π/2+α)= -tanα
(8)sin(3π/2-α)= -cosα,cos(3π/2-α)= -sinα,
tan(3π/2-α)= cotα,cot(3π/2-α)= tanα
(k·π/2±α) ,其中k∈Z
注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;
当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos。偶数则不变;
用角(k·π/2±α)所在的象限确定等式右边三角函数的正负。
例:tan(3π/2 +α)= -cotα
∵在这个式子中k=3,是奇数,因此等式右边应变为cot
又,∵角(3π/2 +α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα。
三角函数在各象限中的正负分布
sin:第一第二象限中为正;第三第四象限中为负
cos:第一第四象限中为正;第二第三象限中为负
cot、tan:第一第三象限中为正;第二第四象限中为负
有什么其他的问题可以联系我,很乐意帮你解答数学题
高中数学必修四立体几何所有公式?
最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。

立方图形
名称 符号 面积S和体积V
1、正方体 a-边长 S=6a2 ; V=a3
2、长方体a-长;b-宽 ;c-高; S=2(ab+ac+bc) ; V=abc
3、圆柱 r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积
S表—表面积
C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h =πr2h
4、空心圆柱 R-外圆半径;r-内圆半径;h-高
V=πh(R2-r2)
5、直圆锥r-底半径;h-高 V=πr2h/3
6、圆台r-上底半径R-下底半径h-高
V=πh(R2+Rr+r2)/3
7、棱柱S-底面积;h-高;V=Sh
8、棱锥 S-底面积h-高 ;V=Sh/3
9、棱台S1和S2-上、下底面积h-高 ;V=h[S1+S2+(S1S1)1/2]/3
10、拟柱体S1-上底面积 ;S2-下底面积 ;S0-中截面积 ;h-高
V=h(S1+S2+4S0)/6
11、球 r-半径 ;d-直径 V=4/3πr3=πd2/6
12、球缺 h-球缺高;r-球半径;a-球缺底半径
V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
13、球台r1和r2-球台上、下底半径;h-高
V=πh[3(r12+r22)+h2]/6
14、圆环体R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径 V=2π2Rr2=π2Dd2/4
15、桶状体D-桶腹直径;d-桶底直径;h-桶高
V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
到此,以上就是小编对于高中数学必修五的公式的问题就介绍到这了,希望介绍关于高中数学必修五的公式的2点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.sssnss.com/post/18450.html