高中数学必修一函数单调性(高中数学必修一函数单调性典型例题)
大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修一函数单调性的问题,于是小编就整理了4个相关介绍高中数学必修一函数单调性的解答,让我们一起看看吧。
一次函数的单调性和公式?
答题:一次函数的单调性是函数曲线只有一个方向性,单调无改变。
设y=kx+b(k0),则当k>0时,y随x的增大而增大;当k<0,y随x的增大而减小。
函数性质:
1、y的变化值与对应的x的变化值成正比例,比值为k。
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2、当x=0时,b为函数在y轴上的交点,坐标为(0,b)。
当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3、k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
4、当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
一次函数单调性求法?
1、导数法:首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、定义法:设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数。
3、性质法:若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:
① f(x)与f(x)+C(C为常数)具有相同的单调性;
②f(x)与c?f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
③当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
④当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数。
4、复合函数同增异减法:对于复合函数y=f [g(x)]满足“同增异减”法(应注意内层函数的值域),令 t=g(x),则三个函数 y=f(t)、t=g(x)、y=f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
函数单调性定理?
函数的单调性(monotonicity)也可以叫做函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
函数的单调性常见题型及解法?
函数单调性是研究函数的自变量和函数值之间大小变化规律的性质。
函数单调性的常见题型分为两大类,一:确定函数的单调性或单调区间,常用的方法有定义法(确定自变量,求对应函数值的差),导数法(计算函数导数正负),图像法(画图)和性质法(函数运算和复合函数单调性性质)。二:对单调性性质的应用,1、比较函数值或自变量大小(转化为同一个函数比较),2、求函数的最值(基本不等式法或导数法),3、解不等式(转化为同一函数函数值大小关系式,比较自变量大小),4、求参数范围(判定单调性或构建方程、不等式求解)。
到此,以上就是小编对于高中数学必修一函数单调性的问题就介绍到这了,希望介绍关于高中数学必修一函数单调性的4点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.sssnss.com/post/15682.html